Colorado Math Pathways Task Force Recommendations

Mission

- Draft a public statement on the importance of better alignment of and advising into gateway math courses.
- Identify and suggest alternative gateway math courses, that are rigorous and of quality in content and competencies, and that are appropriately aligned with the math skills students need to succeed in their programs of study.
- Work with representatives from academic disciplines and advisors to review math requirements and consider alternative courses to college algebra for non-calculus based majors.

Distribution of students enrolled in three gateway courses by four year institution

		% ENROLLED	%
	% ENROLLED	MATH FOR	ENROLLED
	COLLEGE	THE LIBERAL	INTRO TO
INSTITUTION NAME	ALGEBRA	ARTS	STATS
Adams State University	89	7	4
Colorado Mesa University	67	24	9
Colorado State University	73	27	0
Colorado State University - Pueblo	44	23	33
Fort Lewis College	45	12	43
Metropolitan State U. of Denver	25	43	32
University of Colorado Boulder	35	48	17
University of Colorado Denver	39	35	26
University of Northern Colorado	27	21	51
Western State Colorado University	85	15	0

Distribution of students enrolled in three gateway courses by institution – Community Colleges

		% ENROLLED	%
	% ENROLLED	MATH FOR	ENROLLED
	COLLEGE	THE LIBERAL	INTRO TO
INSTITUTION NAME	ALGEBRA	ARTS	STATS
Aims Community College	66	12	22
Arapahoe Community College	66	12	22
Colorado Mountain College	74	9	17
Colorado Northwestern CC	65	20	15
Community College of Aurora	64	15	21
Community College of Denver	62	18	20
Front Range Community College	73	7	20
Lamar Community College	70	23	7
Morgan Community College	60	3	37
Northeastern Junior College	79	1	19
Otero Junior College	70	18	11
Pikes Peak Community College	75	12	12
Pueblo Community College	54	22	25
Red Rocks Community College	69	13	18
Trinidad State Junior College	75	7	18

Summary

 Four 4-year institutions have the majority of students in college algebra; the others have students distributed almost equally across the 3 gateway math courses.

Nearly all of the community colleges have much larger enrollments in College Algebra

Recommendations from the Task Force

Curriculum

Advising

Support & Professional Development

Recommendation 1 - Curriculum

- Revise current math pathways into more well defined pathways
 - CalcPath
 - StatPath
 - QuanThinkingPath

Recommendation - CalcPath

CalcPath

Ourrent course options:

- **1**. Go right into Calculus I
- 2. Take Pre-Calculus and then Calculus I
- 3. Follow the current sequence of College Algebra, Trigonometry, and Calculus I
- Potential support options to assist students in completing Calculus I in first year/first 30 credit hours
 - **1**. Co-requisite instruction/support
 - 2. Stretch courses (the risk here is transferring before completing the entire course)
 - 3. Online support modules
 - 4. Compressed/accelerated modules

Recommendation - StatPath

StatPath

- Primarily use the existing Intro to Statistics content
- Encourage use of modeling as an approach for the course
- Students should take Intro to Stats without a credit-bearing pre-requisite
 - No college-level math pre-requisites are necessary, e.g., College Algebra
 - Enter the course when college ready (that is, have completed remedial if needed, like MAT 050: Quantitative Literacy)

Recommendation – QuanThinkingPath, I

QuanThinkingPath

- MAT 050 as the developmental education path
- Meets the GT Pathways/core Gen Ed requirement
- Generally is a terminal math course
- Recommendation is for courses to be rigorous, support problem solving, numerical and reasoning skills, and address the state competencies.
- Courses may include:
 - Revised Math for Liberal Arts course
 - New algebra-based modeling course

Recommendation – QuanThinkingPath, II

QuanThinkingPath

- Recommended revisions for existing Liberal Arts course
 - Consistency in key topics
 - Financial literacy, descriptive statistics, algebraic models, and reasoning
 - ✓ Additional topics to include use CCCNS content/competencies
 - More depth, less breadth
 - Emphasis on modeling, problem solving, and quantitative reasoning
 - Less emphasis on appreciation of math topics

Recommendation – QuanThinkingPath, III

- Develop new algebraic modeling course for the CCCNS/4-year schools
 - Focus intended for majors that need Algebra skills but not Calculus
 - More conversation to come
 - Intended Learning Outcomes to be determined
 - Assessment Approaches
 - Content to be determined
 - Goal of fall 2017 for pilot

Content Revisions

CONNECTING UPDATED COMPETENCIES AND REVISED COURSE LEARNING OUTCOMES

Using Statistics as an example

Where are we now...

- Currently 47 course objectives
- Written as a "laundry list" for faculty to cover
- See Handout 1

MAT 135/BUS 226

Course Objectives:

- 1. Have a working knowledge of and distinguish between the two branches of statistics, descriptive statistics, inferential statistics.
- 2. Distinguish between qualitative, quantitative data.
- 3. Distinguish between the following levels of measurement: A. Nominal B. Ordinal C. Interval D. Ratio.
- 4. Define a population and a sample.
- 5. Define parameter and statistic.

Down to...

47. Read, analyze, and apply to problems written material related to statistics.

April 2013 Fac2Fac

- Faculty convened to begin work on content revisions
- Many working groups struggled with revising content and writing learning outcomes
- Why Competencies were revised first
- Statistics working group made some strides in content revisions
- See Handout 2
- Better than the list of 47 but...

Learning Outcome 1: Descriptive Statistics

Learning Outcome 1: Descriptive Statistics

- . The student should be able to:
 - compute and interpret measures of center and measures of variation of data.
 - construct and analyze graphical displays to summarize data

Trying to map and measure

- While the course learning outcomes are improved, there are still some issues: Compound learning outcomes are difficult to map and measure
 - Which part of the statement is actually being addressed in the student work?
 - How can you use data to improve student learning if you are not sure what you are measuring?
- Need to map each course learning outcomes to a competency learning outcome...

Outcome vs Objective

Outcome	Objective
Focused on Learner	Focused on Content
Student-centered	Teacher-centered
Performance-based	"Coverage"
Observable in students	Observable in teacher
Measureable	Difficult to measure

Definitions of Learning Outcome

Learning outcomes are statements that describe significant and essential learning that learners have achieved, and can reliably demonstrate at the end of a course or program. In other words, learning outcomes identify what the learner will know and be able to do by the end of a course or program.

Learning outcomes are statements of what a learner is expected to know, understand and/or be able to demonstrate after completion of a process of learning.

Anatomy of Learning Outcome

Learning Outcome statements may be broken down into three main components:

- an <u>action word</u> that identifies the performance to be demonstrated;
- a *learning statement* that specifies what learning will be demonstrated in the performance;
- a broad statement of the <u>criterion</u> or standard for acceptable performance.

Writing Learning Outcomes

ACTION WORD	LEARNING STATEMENT	CRITERION
(performance)	(the learning)	(the conditions of the performance demonstration)
Summarize	the 3 techniques	used to evaluate trigonometric integrals
Demonstrate	basic communicative strategies	for everyday situations
Organize	clinical data (including history, physical exam, laboratory Assessments)	to create an appropriate treatment plan based on patient data

Action word + Learning Statement + Criterion

COMPREHENSION					EVALUATION
KNOWLEDGE		APPLICATION	ANALYSIS	SYNTHESIS	
	Associate			Arrange	Appraise
Cite	Classify	VlagA	Analyze	Assemble	Assess
Count	Compare	Calculate	Appraise	Collect	Choose
Define	Compute	Classify	Calculate	Compose	Compare
Draw	Contrast	Demonstrate	Categorize	Construct	Criticize
Identify	Differentiate	Determine	Classify	Create	Determine
List	Discuss	Fmploy	Compare	Design	Estimate
Name	Distinguish	Examine	Debate	Formulate	Evaluate
Point	Estimate	Illustrate	Diagram	Integrate	Grade
Quote	Explain	Interpret	Differentiate	Manage	Judge
Read	Express	Locate	Distinguish	Organize	Measure
Recite	Extrapolate	Order	Examine	Plan	Rank
Record	Interpolate	Practice	Experiment	Prepare	Rate
Repeat	Locate	Report	Inspect	Prescribe	Recommend
Select	Predict	Restructure	Inventory	Produce	Revise
State	Report	Schedule	Question	Propose	Score
Tabulate	Restate	Sketch	Separate	Specify	Select
Tell	Review	Translate	Summarize	Synthesize	Standardize
Trace	Tell	Use	Test	Write	Test
Underline	Translate	Write			Validate

COMPREHENSION

EVALUATION

APPLICATION	ANALYSIS	SYNTHESIS
-------------	----------	-----------

KNOWLEDGE Associate Cite Classify Count Compare Define Compute Draw Contrast Identify Differentiate List Discuss Name Distinguish Point Estimate Quote Explain Read **Express** Recite Extrapolate Record Interpolate Repeat Locate Select Predict State Report **Tabulate** Restate Tell Review Trace Tell Underline **Translate**

Apply Calculate Classify Demonstrate Determine Dramatize Employ Examine Illustrate Interpret Locate Operate Order **Practice** Report Restructure Schedule Sketch Solve Translate Use Write

Analyze Appraise Calculate Categorize Classify Compare Debate Diagram Differentiate Distinguish Examine Experiment inspect Invontory Test

Arrange Assemble Collect Compose Construct Create Design **Formulate** Integrate Manage Organize Plan **Prepare** Prescribe Lower division course outcomes

Write

Appraise Assess Choose Compare Criticize Determine **Estimate** Evaluate Grade Judge Measure Rank Rate Recommend Povico

ze Test Validate

	CO	MPREHENSION	N			EVALUATION
	KNOWLEDGE		APPLICATION	ANALYSIS	SYNTHESIS	
	Cito	Associate			Arrange	Appraise
	Cite	Classify	Apply	Analyze	Assemble	Assess
	Count	Compare	Calculate	Appraise	Collect	Choose
	Define	Compute	Classify	Calculate	Compose	Compare
	Draw	Contrast	Demonstrate	Categorize	Construct	Criticize
	Identify	Differentiate	Determine	Classify	Create	Determine
	List	Discuss	Fmploy	Compare	Design	Estimate
	Name	Distinguish	Examine	Debate	Formulate	Evaluate
<	Point	Estimate	Illustrate	Diagram	Integrate	Grade
	Quote	Explain	Interpret	Differentiate	Manage	Judge
	Read	Express	Locate	Distinguish	Organize	Measure
	Recite	Extrapolate	Operate	Examine	Plan	Rank
	Record	Interpolate	Practice	Experiment	Proparo	Rate
	Repeat	Locate	Report	Inspect	Prescribe	Recommend
			ıcture	Inventorv	Produce	Revise
	Uppe	r aivision	dule	Question	Propose	Score
	Course	./ Prograr	n tch	Separate	Specify	Select
	ou	tcomes	ive slate	Summarize	Synthesize	Standardize
	пасс	теп	Use	Test	Synthesize	Test
	Underline	Translate	Write		vvrite	Validate

Meaningful, Measureable, Manageable

COMPOUND ACTION STATEMENTS

Learning Outcome 1: Descriptive Statistics

Learning Outcome 1: Descriptive Statistics

. The student should be able to:

- compute and interpret measures of center and measures of variation of data.
- construct and analyze graphical displays to summarize data

SINGLE ACTION STATEMENTS

Learning Outcome 1: Descriptive Statistics

Learning Outcome 1: Descriptive Statistics

The student should be able to:

- compute measures of center and measures of variation of data.
- interpret measures of center and measures of variation of data.
- construct graphical displays to summarize data.
- analyze graphical displays to summarize data.

Mapping to Quantitative Literacy

Quantitative Literacy Learning Outcomes							
Learning	Learning	Learning	Learning	Learning	Learning		
Outcome 1	Outcome 2	Outcome 3	Outcome 4	Outcome 5	Outcome 6		
Students should be	Students should be	Students should be	Students should be	Students should be	Students should be		
able to interpret	able to represent	able to perform	able to apply and	able to	able to address		
Information	Information	calculations	analyze information	communicate using	assumptions		
a. Explain	a. Convert	a. Solve problems or	a. Make use of	mathematical forms	a. Describe and		
information	information into	equations at the	graphical objects	a. Express	support		
presented in	and between	appropriate course	(such as graphs of	mathematical	assumptions in		
mathematical forms	various	level. b. Use	equations in two or	analysis	estimation,		
(e.g., equations,	mathematical forms	appropriate	three variables,	symbolically,	modeling, and data		
graphs, diagrams,	(e.g., equations,	mathematical	histograms,	graphically, and in	analysis, used as		
tables, words).	graphs, diagrams,	notation. c. Solve a	scatterplots of	written language	appropriate for the		
	tables, words).	variety of different	bivariate data,	that	course		
		problem types that	geometrical figures,	clarifies/justifies/su			
		involve a multi-step	etc.) to supplement	mmarizes reasoning			
		solution and	a solution to a	(may also include			
		address the validity	typical problem at	oral			
		of the results.	the appropriate	communication).			
			level.				
			b. Formulate,				
			organize, and				
			articulate solutions				
			to theoretical and				
			application				
			problems at the				
			appropriate course				
			level.				
			c. Make judgments				
			based on				
			mathematical				
			analysis appropriate				
			to the course level.				

Mapping + Single Action = 😼

WHERE DO THESE GO IF THEY FIT TWO PLACES?

Learning Outcome 1: Descriptive Statistics

Learning Outcome 1: Descriptive Statistics

. The student should be able to:

- compute and interpret measures of center and measures of variation of data.
- construct and analyze graphical displays to summarize data

EASY TO MAP TO QL LEARNING OUTCOMES: SEE HANDOUT 4

Learning Outcome 1: Descriptive Statistics

Learning Outcome 1: Descriptive Statistics

The student should be able to:

- compute measures of center and measures of variation of data.
- interpret measures of center and measures of variation of data.
- construct graphical displays to summarize data.
- analyze graphical displays to summarize data.

Goal for the day in content groups

- 1) Determine the "bid ideas" or major themes within the content for the course being revised
 - Keep in mind that College Algebra is part of the Calc Path
 - Only students taking the Calculus Sequence should be in this path.
 - Examine course content with advanced coursework in mind...scaffold for success
- 2) Use these "big ideas" or major themes to write a set of learning outcomes for the course
 - This is only the first draft
 - Don't expect them to be perfect
 - Use measureable action words
- 3) Writing compound statements to start is okay
- 4) Try for 8-12 at most